4.6 Article

An Automated Phylogenetic Tree-Based Small Subunit rRNA Taxonomy and Alignment Pipeline (STAP)

期刊

PLOS ONE
卷 3, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0002566

关键词

-

资金

  1. National Science Foundation [0228651]
  2. Gordon and Betty Moore Foundation [1660]
  3. Division Of Environmental Biology
  4. Direct For Biological Sciences [0228651] Funding Source: National Science Foundation

向作者/读者索取更多资源

Comparative analysis of small-subunit ribosomal RNA (ss-rRNA) gene sequences forms the basis for much of what we know about the phylogenetic diversity of both cultured and uncultured microorganisms. As sequencing costs continue to decline and throughput increases, sequences of ss-rRNA genes are being obtained at an ever-increasing rate. This increasing flow of data has opened many new windows into microbial diversity and evolution, and at the same time has created significant methodological challenges. Those processes which commonly require time-consuming human intervention, such as the preparation of multiple sequence alignments, simply cannot keep up with the flood of incoming data. Fully automated methods of analysis are needed. Notably, existing automated methods avoid one or more steps that, though computationally costly or difficult, we consider to be important. In particular, we regard both the building of multiple sequence alignments and the performance of high quality phylogenetic analysis to be necessary. We describe here our fully-automated ss-rRNA taxonomy and alignment pipeline (STAP). It generates both high-quality multiple sequence alignments and phylogenetic trees, and thus can be used for multiple purposes including phylogenetically-based taxonomic assignments and analysis of species diversity in environmental samples. The pipeline combines publicly-available packages (PHYML, BLASTN and CLUSTALW) with our automatic alignment, masking, and tree-parsing programs. Most importantly, this automated process yields results comparable to those achievable by manual analysis, yet offers speed and capacity that are unattainable by manual efforts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据