4.6 Article

Chlamydiae Has Contributed at Least 55 Genes to Plantae with Predominantly Plastid Functions

期刊

PLOS ONE
卷 3, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0002205

关键词

-

资金

  1. National Aeronautics and Space Administration [NNG04GM17G]
  2. National Science Foundation [EF 04-31117]
  3. National Institutes of Health [R01ES013679]

向作者/读者索取更多资源

Background: The photosynthetic organelle (plastid) originated via primary endosymbiosis in which a phagotrophic protist captured and harnessed a cyanobacterium. The plastid was inherited by the common ancestor of the red, green (including land plants), and glaucophyte algae (together, the Plantae). Despite the critical importance of primary plastid endosymbiosis, its ancient derivation has left behind very few footprints of early key events in organelle genesis. Methodology/Principal Findings: To gain insights into this process, we conducted an in-depth phylogenomic analysis of genomic data (nuclear proteins) from 17 Plantae species to identify genes of a surprising provenance in these taxa, Chlamydiae bacteria. Previous studies show that Chlamydiae contributed many genes (at least 21 in one study) to Plantae that primarily have plastid functions and were postulated to have played a fundamental role in organelle evolution. Using our comprehensive approach, we identify at least 55 Chlamydiae-derived genes in algae and plants, of which 67% (37/55) are putatively plastid targeted and at least 3 have mitochondrial functions. The remainder of the proteins does not contain a bioinformatically predicted organelle import signal although one has an N-terminal extension in comparison to the Chlamydiae homolog. Our data suggest that environmental Chlamydiae were significant contributors to early Plantae genomes that extend beyond plastid metabolism. The chlamydial gene distribution and protein tree topologies provide evidence for both endosymbiotic gene transfer and a horizontal gene transfer ratchet driven by recurrent endoparasitism as explanations for gene origin. Conclusions/Significance: Our findings paint a more complex picture of gene origin than can easily be explained by endosymbiotic gene transfer from an organelle-like point source. These data significantly extend the genomic impact of Chlamydiae on Plantae and show that about one-half (30/55) of the transferred genes are most closely related to sequences emanating from the genome of the only environmental isolate that is currently available. This strain, Candidatus Protochlamydia amoebophila UWE25 is an endosymbiont of Acanthamoeba and likely represents the type of endoparasite that contributed the genes to Plantae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据