4.6 Article

When the Genome Plays Dice: Circumvention of the Spindle Assembly Checkpoint and Near-Random Chromosome Segregation in Multipolar Cancer Cell Mitoses

期刊

PLOS ONE
卷 3, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0001871

关键词

-

资金

  1. Swedish Children's Cancer Foundation
  2. Swedish Cancer Society
  3. Swedish Research Council
  4. Swedish Medical Society
  5. Swiss National Science Foundation [3152A0-100431]
  6. Lund University Hospital Donation Funds
  7. Gunnar Nilsson Cancer Foundation
  8. Medical Faculty of Lund University
  9. Crafoord Foundation
  10. Erik-Philip Sorensen Foundation
  11. Lundgren Foundation
  12. Sward Foundation

向作者/读者索取更多资源

Background: Normal cell division is coordinated by a bipolar mitotic spindle, ensuring symmetrical segregation of chromosomes. Cancer cells, however, occasionally divide into three or more directions. Such multipolar mitoses have been proposed to generate genetic diversity and thereby contribute to clonal evolution. However, this notion has been little validated experimentally. Principal Findings: Chromosome segregation and DNA content in daughter cells from multipolar mitoses were assessed by multiphoton cross sectioning and fluorescence in situ hybridization in cancer cells and non-neoplastic transformed cells. The DNA distribution resulting from multipolar cell division was found to be highly variable, with frequent nullisomies in the daughter cells. Time-lapse imaging of H2B/GFP-labelled multipolar mitoses revealed that the time from the initiation of metaphase to the beginning of anaphase was prolonged and that the metaphase plates often switched polarity several times before metaphase-anaphase transition. The multipolar metaphase-anaphase transition was accompanied by a normal reduction of cellular cyclin B levels, but typically occurred before completion of the normal separase activity cycle. Centromeric AURKB and MAD2 foci were observed frequently to remain on the centromeres of multipolar ana-telophase chromosomes, indicating that multipolar mitoses were able to circumvent the spindle assembly checkpoint with some sister chromatids remaining unseparated after anaphase. Accordingly, scoring the distribution of individual chromosomes in multipolar daughter nuclei revealed a high frequency of nondisjunction events, resulting in a near-binomial allotment of sister chromatids to the daughter cells. Conclusion: The capability of multipolar mitoses to circumvent the spindle assembly checkpoint system typically results in a near-random distribution of chromosomes to daughter cells. Spindle multipolarity could thus be a highly efficient generator of genetically diverse minority clones in transformed cell populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据