4.6 Article

Mitogen-Activated Protein Kinases Regulate Susceptibility to Ventilator-Induced Lung Injury

期刊

PLOS ONE
卷 3, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0001601

关键词

-

资金

  1. NIH [R01-HL60234, R01-HL55330, R01-HL079904, P01-HL70807]
  2. American Heart Association [0335035N]
  3. Deutsche Forschungsgemeinschaft [HO 2464/1-1]

向作者/读者索取更多资源

Background: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2)-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation. Methodology and Principle Findings: C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3(-/-)) or c-Jun-NH(2)-terminal kinase-1 (jnk1(-/-)) were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3(-/-) or jnk1(-/-) mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1(-/-) mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild- type or jnk1(-/-) mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8) and GADD45 alpha. Functional characterization of MMP8 revealed that mmp8(-/-) mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability. Conclusions: We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH(2)-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据