4.3 Article

Tabletop laser-driven gamma-ray source with nanostructured double-layer target

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6587/aadbeb

关键词

laser-driven gamma-ray source; nanostructured double-layer target; direct laser acceleration; relativistic self-focusing; nonlinear Compton scattering

资金

  1. IBS (Institute for Basic Science) [IBS-R012-D1]
  2. GIST through the grant 'Research on Advanced Optical Science and Technology'
  3. UK EPSRC [EP/G056803/1, EP/G055165/1]

向作者/读者索取更多资源

Laser-driven gamma-ray source potentially offers a compact, cost-effective, ultra-short, and ultra-bright alternative to conventional gamma-ray sources based on large-scale particle accelerators. Based on the laser-driven approach, we use multidimensional particle-in-cell simulations to demonstrate that a nanostructured double-layer target, which consists of a nanostructured foam coated on top of a metal substrate, can absorb laser energy into high-energy electrons in the nanostructured foam, and then efficiently convert it into copious gamma photons via the nonlinear Compton scattering process enabled by the solid-density substrate, which acts as a plasma mirror to reflect the laser pulse. The effects of different nanostructures in the foam target and the oblique laser incidence are presented. It is shown that the conversion efficiency of gamma photons increases when the size of nanoparticles decreases or the filling factor of nanoparticles increases in nanostructured foam target, but decreases when the laser incidence angle increases. At realistic conditions with nanostructured foam and non-normal incidence, the double-layer target still exhibits an unprecedentedly high conversion efficiency in high-energy gamma-ray production due to the laser reflection by the plasma mirror, which can be two and even three orders of magnitude higher than that of the single-layer target without the substrate using currently available lasers with intensity of 10(21) W/cm(2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据