4.3 Article

Studies on the robustness of shock-ignited laser fusion targets

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0741-3335/53/3/035010

关键词

-

资金

  1. Italian MIUR [20072KW45J]
  2. HiPER
  3. EC
  4. MSMT
  5. STFC

向作者/读者索取更多资源

Several aspects of the sensitivity of a shock-ignited inertial fusion target to variation of parameters and errors or imperfections are studied by means of one-dimensional and two-dimensional numerical simulations. The study refers to a simple all-DT target, initially proposed for fast ignition (Atzeni et al 2007 Phys. Plasmas 7 052702) and subsequently shown to be also suitable for shock ignition (Ribeyre et al 2009 Plasma Phys. Control. Fusion 51 015013). It is shown that the growth of both Richtmyer-Meshkov and Rayleigh-Taylor instability (RTI) at the ablation front is reduced by laser pulses with an adiabat-shaping picket. An operating window for the parameters of the ignition laser spike is described; the threshold power depends on beam focusing and synchronization with the compression pulse. The time windowfor spike launch widens with beam power, while the minimum spike energy is independent of spike power. A large parametric scan indicates good tolerance (at the level of a few percent) to target mass and laser power errors. 2D simulations indicate that the strong igniting shockwave plays an important role in reducing deceleration-phase RTI growth. Instead, the high hot-spot convergence ratio (ratio of initial target radius to hot-spot radius at ignition) makes ignition highly sensitive to target mispositioning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据