4.5 Article

Plasma Characteristics and Plasma-Feedstock Interaction Under PS-PVD Process Conditions

期刊

PLASMA CHEMISTRY AND PLASMA PROCESSING
卷 34, 期 5, 页码 1171-1186

出版社

SPRINGER
DOI: 10.1007/s11090-014-9563-z

关键词

Plasma spraying; PS-PVD; Free molecular flow; Drag force; Heat transfer

向作者/读者索取更多资源

Plasma spray-physical vapor deposition (PS-PVD) is a novel coating process based on plasma spraying. In contrast to conventional methods, deposition takes place not only from liquid splats but also from nano-sized clusters and from the vapor phase. This offers new opportunities to obtain advanced microstructures and thus to comply with growing demands on modern functional coatings. In this study, different process conditions were investigated with regard to the application of the PS-PVD process for ceramic thermal barrier coatings. Plasma characteristics were calculated under chemical equilibrium conditions by minimizing the Gibbs energy. The plasma-feedstock interaction was modeled taking into account the particular conditions at very low pressure. Since the plasma is highly rarefied, the small feedstock particles are in the free molecular flow regime. Hence, continuum methods commonly used in fluid mechanics and heat transfer approaches with continuous boundary conditions are not appropriate; alternative methods based on the kinetic theory of gases are required. The experimental results confirm the predictions about the degree of vaporization made by such calculations. In particular, they show that the feedstock treatment mainly takes place within the very first trajectory segment between injector and jet expansion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据