4.5 Article

Anti-Ischemic Activity and Endothelium-Dependent Vasorelaxant Effect of Hydrolysable Tannins from the Leaves of Rhus coriaria (Sumac) in Isolated Rabbit Heart and Thoracic Aorta

期刊

PLANTA MEDICA
卷 75, 期 14, 页码 1482-1488

出版社

GEORG THIEME VERLAG KG
DOI: 10.1055/s-0029-1185797

关键词

Rhus coriaria L.; Anacardiaceae; isolated rabbit heart; ischemia-reperfusion; cardiovascular protection; tannins

向作者/读者索取更多资源

The aim of this work was to investigate the cardio-protective activity of hydrolysable gallotannins from Rhus coriaria L. leaves extract (RCLE) in isolated rabbit heart preparations, submitted to low-flow ischemia/reperfusion damage. RCLE induces a dose-dependent normalization of coronary perfusion pressure (CIPP), reducing left ventricular contracture during ischemia, and improving left ventricular developed pressure and the maximum rate of rise and fall of left ventricular pressure at reperfusion. Creatinine kinase (CK) and lactate dehydrogenase (LDH) outflow were significantly reduced during reperfusion. In parallel there was a rise in the release of the cytoprotective 6-ketoprostaglandin 171, (6-keto-PGF(1 alpha)) and a decrease of tumor necrosis factor-alpha (TNF-alpha), both significant only at the highest RCLE concentrations (150-500 mu g/mL). The vasorelaxant activity of RCLE was studied in isolated rabbit aorta rings precontracted with norepinephrine (NE) with and without endothelium. The vasorelaxation induced by RCLE was predominantly endothelium-dependent as demonstrated by the loss of RCLE vasorelaxant ability in i) de-endothelized rings and ii) in intact aortic rings after pretreatment with N-G-monomethyl-L-arginine (L-NMMA) and 1H-[1.2.4]oxadiazolo[4.3-a]quinoxalin-1-one (ODQ). The inhibition of vasorelaxation in intact rings by indomethacin (INDO) demonstrates the ability of RCLE to modulate the coronary endothelium cyclooxygenase (COX) pathway. The K-ATP channel antagonist glibenclamide (GLIB) was ineffective. The antioxidant activity of RCLE, investigated in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) model and in living cell systems (rat erythrocytes), was stronger than that of gallic acid, ascorbic acid and trolox. The structure of its main bioactive constituents, profiled by HPLC-ESI-HR-S, comprised a mixture of polygalloylated D-glucopyranose with different degrees of galloylation and 3-O-methyl-gallic acid. The cardiovascular protective effect of RCLE seems to be due to an interplay of different factors: COX pathway activation, TNF-alpha inhibition, endothelial nitric oxide synthase (eNOS) activation, and free radical and ROS scavenging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据