4.7 Article

Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon

期刊

PLANTA
卷 236, 期 3, 页码 851-865

出版社

SPRINGER
DOI: 10.1007/s00425-012-1677-z

关键词

Roots; Phosphate; 'Paris-type'; Fungi; Tillers; Biomass

资金

  1. Office of Science (BER), U.S Dept. of Energy [DE FG02-08ER64628]

向作者/读者索取更多资源

Brachypodium distachyon is a grass species that serves as a useful model for wheat and also for many of the grass species proposed as feedstocks for bioenergy production. Here, we monitored B. distachyon symbioses with five different arbuscular mycorrhizal (AM) fungi and identified symbioses that vary functionally with respect to plant performance. Three symbioses promoted significant increases in shoot phosphorus (P) content and shoot growth of Brachypodium, while two associations were neutral. The Brachypodium/Glomus candidum symbiosis showed a classic 'Paris-type' morphology. In the other four AM symbioses, hyphal growth was exclusively intracellular and linear; hyphal coils were not observed and arbuscules were abundant. Expression of the Brachypodium ortholog of the symbiosis-specific phosphate (Pi) transporter MtPT4 did not differ significantly in these five interactions indicating that the lack of apparent functionality did not result from a failure to express this gene or several other AM symbiosis-associated genes. Analysis of the expression patterns of the complete PHT1 Pi transporter gene family and AMT2 gene family in B. distachyon/G. intraradices mycorrhizal roots identified additional family members induced during symbiosis and again, transcript levels were similar in the different Brachypodium AM symbioses. This initial morphological, molecular and functional characterization provides a framework for future studies of functional diversity in AM symbiosis in B. distachyon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据