4.7 Article

AtGSNOR1 function is required for multiple developmental programs in Arabidopsis

期刊

PLANTA
卷 236, 期 3, 页码 887-900

出版社

SPRINGER
DOI: 10.1007/s00425-012-1697-8

关键词

Nitric oxide; S-nitrosylation; AtGSNOR1; S-nitrosothiols; Plant development

资金

  1. BBSRC CASE studentship
  2. BBSRC [BB/D0118091/1]
  3. Next-Generation BioGreen 21 Program (SSAC), Rural Development Administration, Republic of Korea [PJ009011]
  4. University of Edinburgh
  5. BBSRC [BB/H000984/1] Funding Source: UKRI

向作者/读者索取更多资源

Nitric oxide (NO) has been proposed to regulate a diverse array of activities during plant growth, development and immune function. S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol, to form an S-nitrosothiol (SNO), is emerging as a prototypic redox-based post-translational modification. An ARABIDOPSIS THALIANA S-NITROSOGLUTATHIONE (GSNO) REDUCTASE (AtGSNOR1) is thought to be the major regulator of total cellular SNO levels in this plant species. Here, we report on the impact of loss- and gain-of-function mutations in AtGSNOR1 upon plant growth and development. Loss of AtGSNOR1 function in atgsnor1-3 plants increased the number of initiated higher order axillary shoots that remain active, resulting in a loss of apical dominance relative to wild type. In addition atgsnor1-3 affected leaf shape, germination, 2,4-D sensitivity and reduced hypocotyl elongation in both light and dark grown seedlings. Silique size and seed production were also decreased in atgsnor1-3 plants and the latter was reduced in atgsnor1-1 plants, which overexpress AtGSNOR1. Overexpression of AtGSNOR1 slightly delayed flowering time in both long and short days, whereas atgsnor1-3 showed early flowering compared to wild type. In the atgsnor1-3 line, FLOWERING LOCUS C (FLC) expression was reduced, whereas transcription of CONSTANS (CO) was enhanced. Therefore, AtGSNOR1 may negatively regulate the autonomous and photoperiod flowering time pathways. Both overexpression and loss of AtGSNOR1 function also reduced primary root growth, while root hair development was increased in atgsnor1-1 and reduced in atgsnor1-3 plants. Collectively, our findings imply that AtGSNOR1 controls multiple genetic networks integral to plant growth and development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据