4.7 Review

Piecing together the puzzle of parasitic plant plastome evolution

期刊

PLANTA
卷 234, 期 4, 页码 647-656

出版社

SPRINGER
DOI: 10.1007/s00425-011-1494-9

关键词

Gene losses; Intron losses; Parasitic plants; Plastid genome evolution; Plastome coding capacity; RNA splicing

向作者/读者索取更多资源

The importance of photosynthesis as a mode of energy production has put plastid genomes of plants under a constant purifying selection. This has shaped the characteristic features of plastid genomes across the entire spectrum of photosynthetic plants and has led to a highly uniform and conserved plastid genome with respect to structure, size, gene order, intron and editing site positions and coding capacity. Parasitic species that have dropped photosynthesis as the main energy provider share striking deviations from the plastid genome norm: multiple rear-rangements within the circular chromosome, pseudogenization and gene deletions, promoter losses, intron losses as well as the extensive loss of mRNA editing competence have been reported. The collective loss of larger sets of functionally related genes like those for the plastid NADH-dehydrogenase complex and concomitant losses of RNA polymerase genes together with their target promoters point to domino effects where an initial loss might have triggered others. An example, which will be discussed in more detail, is the concomitant loss of the intron maturase gene matK and all introns that are supposedly subject to MatK-dependent splicing in two Cuscuta species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据