4.7 Article

Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis

期刊

PLANTA
卷 235, 期 3, 页码 523-537

出版社

SPRINGER
DOI: 10.1007/s00425-011-1527-4

关键词

Arabidopsis; Metallothionein; Oxidative stresses; Sacred lotus; Salt stress; Seed germination vigor

资金

  1. Natural Science Foundation of China [30370912]
  2. Natural Science Foundation of Guangdong Province [2006B20101010, 9151027501000075]
  3. Guangdong Agriculture Science and Technology Team [2010D020301003]

向作者/读者索取更多资源

Metallothioneins (MTs) are small, cysteine-rich and metal-binding proteins which are involved in metal homeostasis and scavenging of reactive oxygen species. Although plant MTs have been intensively studied, their roles in seeds remain to be clearly established. Here, we report the isolation and characterization of NnMT2a, NnMT2b and NnMT3 from sacred lotus (Nelumbo nucifera Gaertn.) and their roles in seed germination vigor. The transcripts of NnMT2a, NnMT2b and NnMT3 were highly expressed in developing and germinating sacred lotus seeds, and were dramatically up-regulated in response to high salinity, oxidative stresses and heavy metals. Analysis of transformed Arabidopsis protoplasts showed that NnMT2a-YFP and NnMT3-YFP were localized in cytoplasm and nucleoplasm. Transgenic Arabidopsis seeds overexpressing NnMT2a and NnMT3 displayed improved resistance to accelerated aging (AA) treatment, indicating their significant roles in seed germination vigor. These transgenic seeds also exhibited higher superoxide dismutase activity compared to wild-type seeds after AA treatment. In addition, we showed that NnMT2a and NnMT3 conferred improved germination ability to NaCl and methyl viologen on transgenic Arabidopsis seeds. Taken together, these data demonstrate that overexpression of NnMT2a and NnMT3 in Arabidopsis significantly enhances seed germination vigor after AA treatment and under abiotic stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据