4.7 Article

Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress

期刊

PLANTA
卷 230, 期 2, 页码 293-307

出版社

SPRINGER
DOI: 10.1007/s00425-009-0946-y

关键词

Arabidopsis callus; Ethylene; Ion homeostasis; Nitric oxide; Plasma membrane H+-ATPase; Salt stress

资金

  1. Specialized Research Fund for the Doctoral Program of Higher Education of China [20050730017]
  2. Foundation of Science and Technology of Gansu Province [3ZS051-A25-018]
  3. Hong Kong Research Grant Council [DAG05/06.SC09, DAG04/05.SC08]

向作者/读者索取更多资源

In the present study, the role of ethylene in nitric oxide (NO)-mediated protection by modulating ion homeostasis in Arabidopsis callus under salt stress was investigated. Results showed that the ethylene-insensitive mutant etr1-3 was more sensitive to salt stress than the wild type (WT). Under 100 mM NaCl, etr1-3 callus displayed a greater electrolyte leakage and Na+/K+ ratio but a lower plasma membrane (PM) H+-ATPase activity compared to WT callus. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) or sodium nitroprusside (SNP, a NO donor) alleviated NaCl-induced injury by maintaining a lower Na+/K+ ratio and an increased PM H+-ATPase activity in WT callus but not in etr1-3 callus. The SNP actions in NaCl stress were attenuated by a specific NO scavenger or an ethylene biosynthesis inhibitor in WT callus. Under 100 mM NaCl, the NO accumulation and ethylene emission appeared at early time, and NO production greatly stimulated ethylene emission in WT callus. In addition, ethylene induced the expression of PM H+-ATPase genes under salt stress. The recovery experiment showed that NaCl-induced injury was reversible, as signaled by the similar recovery of Na+/K+ ratio and PM H+-ATPase activity in WT callus. Taken together, the results indicate that ethylene and NO cooperate in stimulating PM H+-ATPase activity to modulate ion homeostasis for salt tolerance, and ethylene may be a part of the downstream signal molecular in NO action.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据