4.7 Article

A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation

期刊

PLANTA
卷 228, 期 6, 页码 919-928

出版社

SPRINGER
DOI: 10.1007/s00425-008-0791-4

关键词

Lignin; Cell wall; Peroxidase; Hydroxycinnamic acid; p-Coumarate; Ferulate; Radical transfer mechanism

资金

  1. USDA-NRI [2004-3531815020]

向作者/读者索取更多资源

Grass lignins are differentiated from other lignin types by containing relatively large amounts of p-coumaric acid (pCA) acylating the C-9 position of lignin subunits. In the case of a mature corn (Zea mays L.) stems, pCA constitutes 15-18% of a dioxane soluble enzyme lignin. The major portion of the pCA is specifically attached to syringyl residues. Studies with isolated corn wall peroxidases show that pCA readily undergoes radical coupling in the presence of hydrogen peroxide, whereas sinapyl alcohol radical coupling proceeds more slowly. Analysis of corn wall peroxidases did not reveal specific enzymes that would lead to the preferred incorporation of sinapyl alcohol as seen in other plants. The addition of ethyl ferulate, methyl p-coumarate, or sinapyl p-coumarate conjugates to a reaction mixture containing peroxidase, sinapyl alcohol, and hydrogen peroxide stimulated the rate of sinapyl alcohol radical coupling by 10-20-fold. Based on spectral analysis it appears that pCA and ferulate radicals form rapidly, but the radical is readily transferred to sinapyl alcohol. The newly formed sinapyl alcohol radicals undergo coupling and cross-coupling reactions. However, sinapyl alcohol radicals do not cross-couple with pCA radicals. As long as hydrogen peroxide is limiting pCA remains uncoupled. Ferulates have similar reaction patterns in terms of radical transfer though they appear to cross-couple in the reaction mixture more readily then pCA. The role of pCA may be to internally provide a radical transfer mechanism for optimizing radical coupling of sinapyl alcohol into the growing lignin polymer. Attachment of some pCA to sinapyl alcohol ensures localization of the radical transfer mechanism in areas where sinapyl alcohol is being incorporated into lignin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据