4.7 Article

Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco

期刊

PLANTA
卷 228, 期 5, 页码 777-787

出版社

SPRINGER
DOI: 10.1007/s00425-008-0779-0

关键词

abscisic acid; ERF protein TSRF1; CE1/GCC-containing genes; seedling development; senescence

资金

  1. National Basic Research Program of China [2006CB100102]
  2. National Science Foundation of China [30525034, 30471047]

向作者/读者索取更多资源

Ethylene response factor (ERF) proteins function as multiple regulators in the interaction of different stress-responsive pathways. During investigating the interaction of ethylene and abscisic acid (ABA) pathways, several GCC-box-binding repressors of ERF proteins have been reported to repress both ethylene- and ABA-related responses, but it is unclear how GCC-box-binding activator ERF proteins are involved in this interaction. Previously, we isolated an ERF protein tomato stress-responsive factor 1 (TSRF1) from tomato by yeast one hybrid, and showed that TSRF1 as a transcriptional activator physically interacts with GCC box, and activates the expression of GCC box-containing genes and enhances resistance to pathogens, while ABA treatment alters the binding ability of TSRF1 with this element and decreases resistance to pathogen Ralstonia solanacearum. Here, we further report that TSRF1 is able to interact with a GCC box-like sequence (indicated as CE1/GCC in this paper) containing the core sequence of ZmABI4-binding-CE1-like element, and regulates ABA responses. Overexpression of TSRF1 in tobacco enhances ABA sensitivity during germination, cotyledon expansion and root elongation. Biochemical and molecular analyses demonstrate that TSRF1 interacts with CE1/GCC. Importantly, ABA treatment enhances the interaction of TSRF1 with the ABA-responsive element and subsequently increasing the expression of ABA-responsive or CE1/GCC-containing genes. In addition, TSRF1 also promotes the expression of senescence-associated genes and tobacco seedling senescence in response to ABA. These results show that TSRF1, a GCC-box-binding activator in plant pathogen resistance, positively regulates ABA-related plant developmental processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据