4.7 Article

Overexpression of SmbHLH10 enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots

期刊

PLANT SCIENCE
卷 276, 期 -, 页码 229-238

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2018.07.016

关键词

bHLH transcription factor; Secondary metabolism; Salvia miltiorrhiza; Tanshinones

资金

  1. National Natural Science Foundation of China [81773835, 81673536]
  2. Natural Science Foundation of Zhejiang Provincial [LZ16H280001]

向作者/读者索取更多资源

The bHLH transcription factors have important role in regulation of plant growth, development, and secondary metabolism. Tanshinones are the major pharmaceutical components present in Salvia miltiorrhiza Bunge. It has been reported that bHLHs have functions in terpenoids biosynthesis. Here, we got a bHLH family member named SmbHLH10 which could positively regulate tanshinones biosynthesis in S. miltiorrhiza hairy roots. In the SmbHLH10-overexpressing line 6, four major tanshinones contents were reaching 2.51-fold (dihydrotanshinone I), 2.84-fold (cryptotanshinone), 2.89- fold (tanshinone I), 2.68-fold (tanshinone II A) of WT, respectively. The variation in tanshinones biosynthetic pathway gene transcription was generally consistent with tanshinones content. DXS2, DXS3 and DXR of MEP pathway were induced substantially, reaching 10-fold, 3-fold, 5.74-fold higher of the WT, respectively. The downstream pathway genes CPS1, CPS5 and CYP76AH1 were highest in line OE-SmbHLH10-6, reached 4.93, 16.29 and 3.27-fold of the WT, respectively, while KSL1's expression was highest in line OE-SmbHLH10-4, 4.64-fold of WT. Yeast one-hybrid assays results showed that SmbHLH10 could binds the predicted G-box motifs within the promoters of DXS2, CPS1 and CPS5. These findings indicated that SmbHLH10 could directly binds to G-box in the pathway genes' promotor, activate their expression and then upregulate tanshinones biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据