4.7 Review

Nonsymbiotic hemoglobins and stress tolerance in plants

期刊

PLANT SCIENCE
卷 176, 期 4, 页码 433-440

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2009.01.003

关键词

Hemoglobin; Nitric oxide; Hypoxia; Stress

向作者/读者索取更多资源

Hemoglobins (Hbs) are heme containing proteins found in most organisms including animals, bacteria, and plants. Their structure, size, and function are quite diverse among the different organisms. There are three different types of hemoglobins in plants: symbiotic (sHb), nonsymbiotic (nsHb), and truncated hemoglobins (trHb). The nonsymbiotic hemoglobins are divided into: class 1 hemoglobins (nsHb-1s), which have a very high affinity for oxygen: and class 2 hemoglobins (nsHb-2s), which have lower affinity for oxygen, are similar to the sHbs. nsHb-1s are expressed under hypoxia, osmotic stress, nutrient deprivation, cold stress, rhizobial infection, nitric oxide exposure, and fungal infection. Tolerance to stress is very important for the survival of the plant. Hemoglobins are one of many different strategies that plants have evolved to overcome stress conditions and survive. Hbs also react with NO produced under different stress conditions. Class 1 nsHbs are involved in a metabolic pathway involving NO. Those hemoglobins provide an alternative type of respiration to mitochondrial electron transport under limiting oxygen concentrations. Class 1 nsHbs in hypoxic plants act as part of a soluble, terminal, NO dioxygenase system, yielding nitrate from the reaction of oxyHb with NO. The overall reaction sequence, referred to as the nsHb/NO cycle, consumes NADH and maintains ATP levels via an as yet unknown mechanism. Class 2 nsHbs seem to scavenge NO in a similar fashion as class I Hbs and are involved in reducing flowering time in Arabidopsis. nsHbs also show peroxidase-like activity and NO metabolism and possibly protect against nitrosative stress in plant-pathogen interaction and in symbiotic interactions. nsHbs may be involved in other stress conditions such as osmotic, nutrient and cold stress together with NO and the function of nsHbs can be in NO metabolism and signal transduction. However, other possible functions cannot be precluded as Hbs have many different functions in other organisms. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据