4.7 Article

Impact of different amendments on biochemical responses of sesame (Sesarnum indicum L.) plants grown in lead-cadmium contaminated soil

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 132, 期 -, 页码 345-355

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2018.09.019

关键词

Pb-Cd bio accessibility; Metals stress; Sesame; Gene expression; Antioxidant system

资金

  1. Major Projects of Technical Innovation in Hubei [2017ABA154]
  2. Major Projects of Science & Technology in Guangxi [AA17202026]
  3. National Science Foundation [41471407]

向作者/读者索取更多资源

Soil co-contamination with lead (Pb) and cadmium (Cd) is a tenacious risk to crop production globally. The current experiment observed the roles of amendments [biochar (BC), slag (SL), and ferrous manganese ore (FMO)] for enhancing Pb and Cd tolerance in sesame (Sescunum indicum L). Our results revealed that application of amendments significantly enhanced the nutrient level of sesame seedlings developed under extreme Pb and Cd conditions. The higher Pb and Cd-tolerance in sesame encouraged by amendments might be credited to its capability to restrict Pb and Cd uptake and decreased oxidative damage induced by Pb and Cd that is also demonstrated by lesser production of hydrogen peroxide (H2O2), malondialdehyde (MDA), and reduced electrolyte leakage (EL) in plant biomass. The added amendments relieved Pb and Cd toxicity and improved photosynthetic pigments, soluble protein, and proline content. Not only this amendments also decreased the antioxidant bulk, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in sesame plants compared to control when exposed to Pb and Cd. Moreover, the added amendments = down-regulated the genes expression which regulate the SOD, POD, and CAT activity in sesame under Pb and Cd-stress. Furthermore, supplementation of amendments to the soil, reduced the bio accessibility (SBET), leachability (TCLP), and mobility (CaCl2) of Pb and Cd. Collectively, our findings conclude that the application of amendments enhanced sesame tolerance to Pb and Cd stress by restricting Pb and Cd accumulation, maintained photosynthetic presentation and dropped oxidative loss through enhanced antioxidant system, thus signifying amendments as an operational stress regulators in modifying Pb and Cd-toxicity that is highly important economically in all crops including sesame.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据