4.7 Article

RING-type ubiquitin ligase McCPN1 catalyzes UBC8-dependent protein ubiquitination and interacts with Argonaute 4 in halophyte ice plant

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 80, 期 -, 页码 211-219

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2014.04.006

关键词

Argonaute 4; Copine; In vitro enzyme assay; Post-translational modification; RING-type ubiquitin ligase; Ubiquitin-conjugating enzyme

资金

  1. Taiwan National Science Council [98-2311-B-005-003-MY3, 100-2321-B-005-005-MY3]

向作者/读者索取更多资源

RING-type copines are a small family of plant-specific RING-type ubiquitin ligases. They contain an N-terminal myristoylation site for membrane anchoring, a central copine domain for substrate recognition, and a C-terminal RING domain for E2 docking. RING-type copine McCPN1 (copine1) from halophyte ice plant (Mesembryanthemum crystallinum L.) was previously identified from a salt-induced cDNA library. In this work, we characterize the activity, expression, and localization of McCPN1 in ice plant. An in vitro ubiquitination assay of McCPN1 was performed using two ice plant UBCs, McUBC1 and McUBC2, characterized from the same salt-induced cDNA library. The results showed that McUBC2, a member of the UBC8 family, stimulated the autoubiquitination activity of McCPN1, while McUBC1, a homolog of the UBC35 family, did not. The results indicate that McCPN1 has selective E2-dependent E3 ligase activity. We found that McCPN1 localizes primarily on the plasma membrane and in the nucleus of plant cells. Under salt stress, the accumulation of McCPN1 in the roots increases. A yeast two-hybrid screen was used to search for potential McCPN1-interacting partners using a library constructed from salt-stressed ice plants. Screening with full-length McCPN1 identified several independent clones containing partial Argonaute 4 (AGO4) sequence. Subsequent agro-infiltration, protoplast two-hybrid analysis, and bimolecular fluorescence complementation assay confirmed that McCPN1 and AGO4 interacted in vivo in the nucleus of plant cells. The possible involvement of a catalyzed degradation of AGO4 by McCPN1 in response to salt stress is discussed. (C) 2014 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据