4.7 Article

Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 73, 期 -, 页码 77-82

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2013.08.012

关键词

Manganese toxicity; Manganese tolerance; Ryegrass; Oxidative stress; Superoxide dismutase isoforms; Fe-SOD; Gene expression

资金

  1. FONDECYT [11100494, 1120901, 3120248]
  2. CONICYT, Chile

向作者/读者索取更多资源

Manganese (Mn) toxicity limits plant growth in acid soils. Although Mn toxicity induces oxidative stress, the role of superoxide dismutase (SOD, EC.1.15.1.1) isoforms in conferring Mn tolerance remains unclear. Seedlings of ryegrass cultivars Nui (Mn-sensitive) and Kingston (Mn-tolerant) were hydroponically grown at 2.4 (optimal) or 750 mu M Mn (toxic) concentration, and harvested from 2 to 48 h. Kingston showed higher shoot Mn than Nui at 2.4;mu M Mn. At toxic supply, shoot Mn concentration steadily increased in both cultivars, with Kingston having the highest accumulation at 48 h. An early (2 h) increase in lipid peroxidation under Mn excess occurred, but it returned (after 6 h) to the basal level in Kingston only. Kingston exhibited higher SOD activity than Nui, and that difference increased due to toxic Mn. In general, Mn-induced gene expression of Mn- and Cu/Zn-SOD isoforms was higher in Nui than Kingston. Nevertheless, under Mn excess, we found a greater Fe-SOD up-regulation (up to 5-fold) in Kingston compared to Nui. Thus, Fe-SOD induction in Kingston might explain, at least partly, its high tolerance to Mn toxicity. This is the first evidence that Mn toxicity causes differential gene expression of SOD isoforms in ryegrass cultivars in the short-term. (C) 2013 Published by Elsevier Masson SAS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据