4.7 Article

The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 49, 期 6, 页码 654-663

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2011.01.020

关键词

bHLH transcription factor; Prunus persica; Endocarp development

资金

  1. Alexander S. Onassis Public Benefit Foundation
  2. General Secretariat for Research and Technology (GSRT) of Greece

向作者/读者索取更多资源

Extensive studies on the dry fruits of the model plant arabidopsis (Arabidopsis thaliana) have revealed various gene regulators of the development and dehiscence of the siliques. Peach pericarp is analogous to the valve tissues of the arabidopsis siliques. The stone (otherwise called pit) in drupes is formed through lignification of the fruit endocarp. The lignified endocarp in peach can be susceptible to split-pit formation under certain genetic as well as environmental factors. This phenomenon delays processing of the clingstone varieties of peach and causes economical losses for the peach fruit canning industry. The FRUITFULL (FUL) and SHATTERPROOF (SHP) genes are key MADS-box transcription protein coding factors that control fruit development and dehiscence in arabidopsis by promoting the expression of basic helix-loop-helix (bHLH) transcription factors like SPATULA (SPT) and ALCATRAZ (ALC). Results from our previous studies on peach suggested that temporal regulation of PPERFUL and PPERSHP gene expression may be involved in the regulation of endocarp margin development. In the present study a PPERSPATULA-like (PPERSFT) gene was cloned and characterized. Comparative analysis of temporal regulation of PPERSPT gene expression during pit hardening in a resistant and a susceptible to split-pit variety, suggests that this gene adds one more component to the genes network that controls endocarp margins development in peach. Taking into consideration that no ALC-like genes have been identified in any dicot plant species outside the Brassicaceae family, where arabidopsis belongs, PPERSPT may have additional role(s) in peach that are fulfilled in arabidopsis by ALC. (C) 2011 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据