4.7 Article

Salt stress affects glutamine synthetase activity and mRNA accumulation on potato plants in an organ-dependent manner

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 47, 期 9, 页码 807-813

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2009.05.002

关键词

Gene expression; Glutamine synthetase; Nitrogen metabolism; Potato; Salt stress

向作者/读者索取更多资源

Ammonium assimilation into glutamine and glutamate is vital for plant growth as these are precursors for almost all nitrogenous compounds. Ammonium can be assimilated onto nitrogenous organic compounds by the concerted action of two enzymes that compose the glutamine synthetase (GS, EC 6.3.1.2) - glutamate synthase (Fd-GOGAT EC 1.4.7.1; NADH-GOGAT, EC 1.4.1.14) cycle. Ammonium may also be directly incorporated into glutamate by the glutamate dehydrogenase (GDH, EC 1.4.1.2) aminating reaction. However, as GDH reversibly deaminates glutamate, its physiological role in vivo remains controversial. Potato has been classified as moderately tolerant to salinity. Potato GS is encoded by a small multigene family which is differentially regulated in an organ and age-dependent way. In this study, the effect of increasing concentrations of salinity in the soil in GS activity and gene-specific mRNA accumulation levels were studied on potato leaves and roots, as well as the biochemical parameters protein, chlorophyll, lipid peroxidation and proline levels, in order to evaluate the severity of the imposed stress. The data obtained suggests that when potato plants are subjected to salt stress, increased ammonium assimilation occurs in roots, due to an increased GS accumulation, along with a decreased assimilation in leaves. Regarding GS gene-specific mRNA accumulation, an organ-dependent response was also observed that contributes for the detected alteration in the ammonium assimilatory metabolism. This response may be a key feature for future genetic manipulations in order to increase crop productivity in salty soils. The possible contribution of GDH for ammonia assimilation was also investigated. (C) 2009 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据