4.7 Review

Plants, MEN and SIN

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 46, 期 1, 页码 1-10

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2007.10.010

关键词

SIN; MEN; AtSGP; AtMAP3Kepsilon; signaling; cell type specification

向作者/读者索取更多资源

In fission yeast, the onset of septation is signalled through the septum initiation network (SIN) signaling pathway. Similarly, in budding yeast the onset of budding is signalled through the mitotic exit network (MEN) pathway. We previously characterized in Arabidopsis signaling elements (GTPases, kinases) closely related to the core elements (spg 1p/TEM1p, cdc7p/CDC15p) of the SIN and MEN pathways. Our first results suggested that a plant signaling pathway must be used to coordinate mitotic exit with cytokinesis. This review questioned the value of such an hypothesis in a multicellular organism. The core elements (G-protein, kinase) of the SIN and MEN pathways were only detected in fungi, plants and Mycetozoa. We also noticed that AtSGP GTPase and AtMAP3Kepsilon kinase revealed two paralogues in Arabidopsis. Although Arabidopsis genes complement fission yeast mutants, and Arabidopsis proteins interact with fission yeast proteins, plants do not use these core elements to coordinate the termination of cell division with cytokinesis. Transcriptional regulation and expression data suggest a function for the plant SIN-like elements in the control of cell type specification. Exploring the evolutionary conservation of an ancient signaling pathway provides evidence that evolution has recycled regulatory elements for elaborating a new signaling avenue. (c) 2007 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据