4.8 Article

Quantitative Analysis of the Mitochondrial and Plastid Proteomes of the Moss Physcomitrella patens Reveals Protein Macrocompartmentation and Microcompartmentation

期刊

PLANT PHYSIOLOGY
卷 164, 期 4, 页码 2081-2095

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.114.235754

关键词

-

资金

  1. Excellence Initiative of the German Federal Government (Spemann Graduate School of Biology and Medicine) [EXC 294 BIOSS, GSC-4]
  2. Excellence Initiative of the German State Government (Spemann Graduate School of Biology and Medicine) [EXC 294 BIOSS, GSC-4]
  3. European Union (European Regional Development Fund)

向作者/读者索取更多资源

Extant eukaryotes are highly compartmentalized and have integrated endosymbionts as organelles, namely mitochondria and plastids in plants. During evolution, organellar proteomes are modified by gene gain and loss, by gene subfunctionalization and neofunctionalization, and by changes in protein targeting. To date, proteomics data for plastids and mitochondria are available for only a few plant model species, and evolutionary analyses of high-throughput data are scarce. We combined quantitative proteomics, cross-species comparative analysis of metabolic pathways, and localizations by fluorescent proteins in the model plant Physcomitrella patens in order to assess evolutionary changes in mitochondrial and plastid proteomes. This study implements data-mining methodology to classify and reliably reconstruct subcellular proteomes, to map metabolic pathways, and to study the effects of postendosymbiotic evolution on organellar pathway partitioning. Our results indicate that, although plant morphologies changed substantially during plant evolution, metabolic integration of organelles is largely conserved, with exceptions in amino acid and carbon metabolism. Retargeting or regulatory subfunctionalization are common in the studied nucleus-encoded gene families of organelle-targeted proteins. Moreover, complementing the proteomic analysis, fluorescent protein fusions revealed novel proteins at organelle interfaces such as plastid stromules (stroma-filled tubules) and highlight microcompartments as well as intercellular and intracellular heterogeneity of mitochondria and plastids. Thus, we establish a comprehensive data set for mitochondrial and plastid proteomes in moss, present a novel multilevel approach to organelle biology in plants, and place our findings into an evolutionary context.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据