4.8 Article

A Significant Fraction of 21-Nucleotide Small RNA Originates from Phased Degradation of Resistance Genes in Several Perennial Species

期刊

PLANT PHYSIOLOGY
卷 162, 期 2, 页码 741-754

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.113.214643

关键词

-

资金

  1. European Linktree project
  2. TipTree (BioDiversa) project
  3. European Commission [FP7-211868]
  4. Erik Philip-Sorensen Foundation

向作者/读者索取更多资源

Small RNAs (sRNAs), including microRNA (miRNA) and short-interfering RNA (siRNA), are important in the regulation of diverse biological processes. Comparative studies of sRNAs from plants have mainly focused on miRNA, even though they constitute a mere fraction of the total sRNA diversity. In this study, we report results from an in-depth analysis of the sRNA population from the conifer spruce (Picea abies) and compared the results with those of a range of plant species. The vast majority of sRNA sequences in spruce can be assigned to 21-nucleotide-long siRNA sequences, of which a large fraction originate from the degradation of transcribed sequences related to nucleotide-binding site-leucine-rich repeat-type resistance genes. Over 90% of all genes predicted to contain either a Toll/interleukin-1 receptor or nucleotide-binding site domain showed evidence of siRNA degradation. The data further suggest that this phased degradation of resistance-related genes is initiated from miRNA-guided cleavage, often by an abundant 22-nucleotide miRNA. Comparative analysis over a range of plant species revealed a huge variation in the abundance of this phenomenon. The process seemed to be virtually absent in several species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and nonvascular plants, while particularly high frequencies were observed in spruce, grape (Vitis vinifera), and poplar (Populus trichocarpa). This divergent pattern might reflect a mechanism to limit runaway transcription of these genes in species with rapidly expanding nucleotide-binding site-leucine-rich repeat gene families. Alternatively, it might reflect variation in a counter-counter defense mechanism between plant species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据