4.8 Article

Direct Interaction between a Precursor Mature Domain and Transport Component Tha4 during Twin Arginine Transport of Chloroplasts

期刊

PLANT PHYSIOLOGY
卷 161, 期 2, 页码 990-1001

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.112.207522

关键词

-

资金

  1. Department of Energy Office of Science Early Career Research Program, Office of Basic Energy Sciences [DE-FG02-10ER16138]

向作者/读者索取更多资源

Proteins destined for the thylakoid lumen of chloroplasts must cross three membranes en route. The chloroplast twin arginine translocation (cpTat) system facilitates the transport of about one-half of all proteins that cross the thylakoid membrane in chloroplasts. Known mechanistic features of the cpTat system are drastically different from other known translocation systems, notably in its formation of a transient complex to transport fully folded proteins utilizing only the protonmotive force generated during photosynthesis for energy. However, key details, such as the structure and composition of the translocation pore, are still unknown. One of the three transmembrane cpTat components, Tha4, is thought to function as the pore by forming an oligomer. Yet, little is known about the topology of Tha4 in thylakoid, and little work has been done to detect precursor-Tha4 interactions, which are expected if Tha4 is the pore. Here, we present evidence of the interaction of the precursor with Tha4 under conditions leading to transport, using cysteine substitutions on the precursor and Tha4 and disulfide bond formation in pea (Pisum sativum). The mature domain of a transport-competent precursor interacts with the amphipathic helix and amino terminus of functional Tha4 under conditions leading to transport. Detergent solubilization of thylakoids post cross linking and blue-native polyacrylamide gel electrophoresis analysis shows that Tha4 is found in a complex containing precursor and Hcf106 (i.e. the cpTat translocase). Affinity precipitation of the cross-linked complex via Tha4 clearly demonstrates that the interaction is with full-length precursor. How these data suggest a role for Tha4 in cpTat transport is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据