4.8 Article

Medicago truncatula ERN Transcription Factors: Regulatory Interplay with NSP1/NSP2 GRAS Factors and Expression Dynamics throughout Rhizobial Infection

期刊

PLANT PHYSIOLOGY
卷 160, 期 4, 页码 2155-2172

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.112.203190

关键词

-

资金

  1. Laboratoire d'Excellence program TULIP [ANR-10-LABX-41]
  2. French Ministry of Education and Research
  3. Biotechnology and Biological Sciences Research Council [BBS/E/J/00000603] Funding Source: researchfish

向作者/读者索取更多资源

Rhizobial nodulation factors (NFs) activate a specific signaling pathway in Medicago truncatula root hairs that involves the complex interplay of Nodulation Signaling Pathway1 (NSP1)/NSP2 GRAS and Ethylene Response Factor Required for Nodulation1 (ERN1) transcription factors (TFs) to achieve full ENOD11 transcription. ERN1 acts as a direct transcriptional regulator of ENOD11 through the activation of the NF-responsive NF box. Here, we show that NSP1, when combined with NSP2, can act as a strong positive regulator of ERN1 and ENOD11 transcription. Although ERN1 and NSP1/NSP2 both activate ENOD11, two separate promoter regions are involved that regulate expression during consecutive symbiotic stages. Our findings indicate that ERN1 is required to activate NF-elicited ENOD11 expression exclusively during early preinfection,while NSP1/NSP2 mediates ENOD11 expression during subsequent rhizobial-infection. The relative contributions of ERN1 and the closely related ERN2 to the rhizobial symbiosis were then evaluated by comparing their regulation and in vivo dynamics. ERN1 and ERN2 exhibit expression profiles compatible with roles during NF signaling and subsequent infection. However, differences in expression levels and spatiotemporal profiles suggest specialized functions for these two TFs, ERN1 being involved in stages preceding and accompanying infection thread progression while ERN2 is only involved in certain stages of infection. By cross complementation, we show that ERN2, when expressed under the control of the ERN1 promoter, can restore both NF-elicited ENOD11 expression and nodule formation in an ern1 mutant background. This indicates that ERN1 and ERN2 possess similar biological activities and that functional diversification of these closely related TFs relies primarily on changes in tissue-specific expression patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据