4.8 Article

Direct Infusion Mass Spectrometry of Oxylipin-Containing Arabidopsis Membrane Lipids Reveals Varied Patterns in Different Stress Responses

期刊

PLANT PHYSIOLOGY
卷 158, 期 1, 页码 324-339

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.111.190280

关键词

-

资金

  1. National Science Foundation [MCB 0920663, 0920600, 0920681, EPS 0236913, DBI 0521587]
  2. Kansas Technology Enterprise Corporation
  3. Kansas IDeA Networks of Biomedical Research Excellence of the National Institutes of Health [P20 RR16475]
  4. Kansas State University
  5. NATIONAL CENTER FOR RESEARCH RESOURCES [P20RR016475] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Direct infusion electrospray ionization triple quadrupole precursor scanning for three oxidized fatty acyl anions revealed 86 mass spectral peaks representing polar membrane lipids in extracts from Arabidopsis (Arabidopsis thaliana) infected with Pseudomonas syringae pv tomato DC3000 expressing AvrRpt2 (PstAvr). Quadrupole time-of-flight and Fourier transform ion cyclotron resonance mass spectrometry provided evidence for the presence of membrane lipids containing one or more oxidized acyl chains. The membrane lipids included molecular species of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, digalactosyldiacylglycerol, monogalactosyldiacylglycerol, and acylated monogalactosyldiacylglycerol. The oxidized chains were identified at the level of chemical formula and included C18H27O3 (abbreviated 18:4-O, to indicate four double bond equivalents and one oxygen beyond the carbonyl group), C18H29O3 (18:3-O), C18H31O3 (18:2-O), C18H29O4 (18:3-2O), C18H31O4 (18:2-2O), and C16H23O3 (16: 4-O). Mass spectral signals from the polar oxidized lipid (ox-lipid) species were quantified in extracts of Arabidopsis leaves subjected to wounding, infection by PstAvr, infection by a virulent strain of P. syringae, and low temperature. Ox-lipids produced low amounts of mass spectral signal, 0.1% to 3.2% as much as obtained in typical direct infusion profiling of normal-chain membrane lipids of the same classes. Analysis of the oxidized membrane lipid species and normal-chain phosphatidic acids indicated that stress-induced ox-lipid composition differs from the basal ox-lipid composition. Additionally, different stresses result in the production of varied amounts, different timing, and different compositional patterns of stress-induced membrane lipids. These data form the basis for a working hypothesis that the stress-specific signatures of ox-lipids, like those of oxylipins, are indicative of their functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据