4.8 Article

Characterization of a Developmental Root Response Caused by External Ammonium Supply in Lotus japonicus

期刊

PLANT PHYSIOLOGY
卷 154, 期 2, 页码 784-795

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.110.160309

关键词

-

资金

  1. European Community [MRTN-CT-2003-505227]
  2. Italian Ministry of Education (Progetti di Rilevanza Nazionale) [PRIN 2008, Prot. 2008WKPAWW]
  3. National Council of Research, Agrofood Department

向作者/读者索取更多资源

Plants respond to changes of nutrient availability in the soil by modulating their root system developmental plan. This response is mediated by systemic changes of the nutritional status and/or by local perception of specific signals. The effect of nitrate on Arabidopsis (Arabidopsis thaliana) root development represents a paradigm of these responses, and nitrate transporters are involved both in local and systemic control. Ammonium (NH4+) represents an important nitrogen (N) source for plants, although toxicity symptoms are often associated with high NH4+ concentration when this is present as the only N source. The reason for these effects is still controversial, and mechanisms associating ammonium supply and plant developmental programs are completely unknown. We determined in Lotus japonicus the range of ammonium concentration that significantly inhibits the elongation of primary and lateral roots without affecting the biomass of the shoot. The comparison of the growth phenotypes in different N conditions indicated the specificity of the ammonium effect, suggesting that this was not mediated by assimilatory negative feedback mechanisms. In the range of inhibitory NH4+ conditions, only the LjAMT1;3 gene, among the members of the LjAMT1 family, showed a strong increased transcription that was reflected by an enlarged topology of expression. Remarkably, the short-root phenotype was phenocopied in transgenic lines by LjAMT1;3 overexpression independently of ammonium supply, and the same phenotype was not induced by another AMT1 member. These data describe a new plant mechanism to cope with environmental changes, giving preliminary information on putative actors involved in this specific ammonium-induced response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据