4.8 Article

Rice Virescent3 and Stripe1 Encoding the Large and Small Subunits of Ribonucleotide Reductase Are Required for Chloroplast Biogenesis during Early Leaf Development

期刊

PLANT PHYSIOLOGY
卷 150, 期 1, 页码 388-401

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.109.136648

关键词

-

资金

  1. Crop Functional Genomics Center of the 21C Frontier RD Program [CG3131]
  2. Agricultural Plant Stress Research Center [R11-2001-092-05003-0]
  3. Program for the Promotion of Basic and Applied Research for Innovations in Bio-oriented Industry, Japan
  4. National Research Foundation of Korea [2007-0051603] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The virescent3 (v3) and stripe1 (st1) mutants in rice (Oryza sativa) produce chlorotic leaves in a growth stage-dependent manner under field conditions. They are temperature-conditional mutants that produce bleached leaves at a constant 20 degrees C or 30 degrees C but almost green leaves under diurnal 30 degrees C/20 degrees C conditions. Here, we show V3 and St1, which encode the large and small subunits of ribonucleotide reductase (RNR), RNRL1, and RNRS1, respectively. RNR regulates the rate of deoxyribonucleotide production for DNA synthesis and repair. RNRL1 and RNRS1 are highly expressed in the shoot base and in young leaves, and the expression of the genes that function in plastid transcription/translation and in photosynthesis is altered in v3 and st1 mutants, indicating that a threshold activity of RNR is required for chloroplast biogenesis in developing leaves. There are additional RNR homologs in rice, RNRL2 and RNRS2, and eukaryotic RNRs comprise a alpha(2)beta(2) heterodimers. In yeast, RNRL1 interacts with RNRS1 (RNRL1: RNRS1) and RNRL2: RNRS2, but no interaction occurs between other combinations of the large and small subunits. The interacting activities are RNRL1:RNRS1 > RNRL1:rnrs1(st1) > rnrl1(v3):RNRS1 > rnrl1(v3):rnrs1(st1), which correlate with the degree of chlorosis for each genotype. This suggests that missense mutations in rnrl1(v3) and rnrs1 (st1) attenuate the first alpha beta dimerization. Moreover, wild-type plants exposed to a low concentration of an RNR inhibitor, hydroxyurea, produce chlorotic leaves without growth retardation, reminiscent of v3 and st1 mutants. We thus propose that upon insufficient activity of RNR, plastid DNA synthesis is preferentially arrested to allow nuclear genome replication in developing leaves, leading to continuous plant growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据