4.8 Article

RNA Interference-Mediated Repression of MtCCD1 in Mycorrhizal Roots of Medicago truncatula Causes Accumulation of C27 Apocarotenoids, Shedding Light on the Functional Role of CCD1

期刊

PLANT PHYSIOLOGY
卷 148, 期 3, 页码 1267-1282

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.108.125062

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [1084]

向作者/读者索取更多资源

Tailoring carotenoids by plant carotenoid cleavage dioxygenases (CCDs) generates various bioactive apocarotenoids. Recombinant CCD1 has been shown to catalyze symmetrical cleavage of C 40 carotenoid substrates at 9,10 and 9', 10' positions. The actual substrate(s) of the enzyme in planta, however, is still unknown. In this study, we have carried out RNA interference (RNAi)-mediated repression of a Medicago truncatula CCD1 gene in hairy roots colonized by the arbuscular mycorrhizal (AM) fungus Glomus intraradices. As a consequence, the normal AM-mediated accumulation of apocarotenoids (C 13 cyclohexenone and C 14 mycorradicin derivatives) was differentially modified. Mycorradicin derivatives were strongly reduced to 3% to 6% of the controls, while the cyclohexenone derivatives were only reduced to 30% to 47%. Concomitantly, a yellow-orange color appeared in RNAi roots. Based on ultraviolet light spectra and mass spectrometry analyses, the new compounds are C 27 apocarotenoic acid derivatives. These metabolic alterations did not lead to major changes in molecular markers of the AM symbiosis, although a moderate shift to more degenerating arbuscules was observed in RNAi roots. The unexpected outcome of the RNAi approach suggests C 27 apocarotenoids as the major substrates of CCD1 in mycorrhizal root cells. Moreover, literature data implicate C 27 apocarotenoid cleavage as the general functional role of CCD1 in planta. A revised scheme of plant carotenoid cleavage in two consecutive steps is proposed, in which CCD1 catalyzes only the second step in the cytosol (C-27 -> C-14 + C-13), while the first step (C-40 -> C-27 + C-13) may be catalyzed by CCD7 and/or CCD4 inside plastids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据