4.8 Article

The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency

期刊

PLANT PHYSIOLOGY
卷 147, 期 3, 页码 1181-1191

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.108.118562

关键词

-

向作者/读者索取更多资源

Root architecture differences have been linked to the survival of plants on phosphate (P)-deficient soils, as well as to the improved yields of P-efficient crop cultivars. To understand how these differences arise, we have studied the root architectures of P-deficient Arabidopsis (Arabidopsis thaliana Columbia-0) plants. A striking aspect of the root architecture of these plants is that their primary root elongation is inhibited when grown on P-deficient medium. Here, we present evidence suggesting that this inhibition is a result of iron (Fe) toxicity. When the Fe concentration in P-deficient medium is reduced, we observe elongation of the primary root without an increase in P availability or a corresponding change in the expression of P deficiency-regulated genes. Recovery of the primary root elongation is associated with larger plant weights, improved ability to take up P from the medium, and increased tissue P content. This suggests that manipulating Fe availability to a plant could be a valuable strategy for improving a plant's ability to tolerate P deficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据