4.8 Article

The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development

期刊

PLANT PHYSIOLOGY
卷 147, 期 3, 页码 1092-1109

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.108.117564

关键词

-

向作者/读者索取更多资源

Apyrases hydrolyze nucleoside triphosphates and diphosphates and are found in all eukaryotes and a few prokaryotes. Although their enzymatic properties have been well characterized, relatively little is known regarding their subcellular localization and physiological function in plants. In this study, we used reverse genetic and biochemical approaches to investigate the role of potato (Solanum tuberosum)-specific apyrase. Silencing of the apyrase gene family with RNA interference constructs under the control of the constitutive 35S promoter led to a strong decrease in apyrase activity to below 10% of the wild-type level. This decreased activity led to phenotypic changes in the transgenic lines, including a general retardation in growth, an increase in tuber number per plant, and differences in tuber morphology. Silencing of apyrase under the control of a tuber-specific promoter led to similar changes in tuber morphology; however, there were no direct effects of apyrase inhibition on tuber metabolism. DNA microarrays revealed that decreased expression of apyrase leads to increased levels of transcripts coding for cell wall proteins involved in growth and genes involved in energy transfer and starch synthesis. To place these results in context, we determined the subcellular localization of the potato-specific apyrase. Using a combination of approaches, we were able to demonstrate that this enzyme is localized to the apoplast. We describe the evidence that underlies both this fact and that potato-specific apyrase has a crucial role in regulating growth and development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据