4.8 Article

Advancing Cell Biology and Functional Genomics in Maize Using Fluorescent Protein-Tagged Lines

期刊

PLANT PHYSIOLOGY
卷 149, 期 2, 页码 601-605

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.108.130146

关键词

-

资金

  1. National Science Foundation [0501862]
  2. Division Of Integrative Organismal Systems
  3. Direct For Biological Sciences [0501862] Funding Source: National Science Foundation

向作者/读者索取更多资源

Genomic resources have significantly impacted plant biology research in recent years. Cell biology has been further enabled by an ongoing revolution in visualization technologies. Using fluorescent proteins (FPs), we now have unprecedented views of cellular architecture, and we can study real-time dynamics of cell structure, function, and protein localization. To date, these technologies have been most widely used in Arabidopsis (Arabidopsis thaliana); however, the grasses provide a unique opportunity to study the underlying mechanisms and inter-related controls of cell growth, morphogenesis, and physiology in leading crop models. Here, we present a resource that leverages the emerging maize (Zea mays) genome sequence to develop tools to study protein structure and function in a cellular context. Traditionally, such studies relied on fixed tissue or FP fusions driven by constitutive promoters, which can lead to significant artifacts. The maize genome sequence now provides access to regulatory regions that can be used to drive native expression. We have developed streamlined methods to generate maize FP-tagged lines using these regulatory elements, allowing analysis of tissue-specific expression and localized function. Identification of diverse proteins that function in specific subcellular compartments will provide the tools for understanding basic developmental, biochemical, and physiological processes in maize, with direct application potential for crop improvement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据