4.8 Article

Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory

期刊

PLANT PHYSIOLOGY
卷 146, 期 3, 页码 952-964

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.107.115691

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM057795, T32 GM008336-17, R01 GM057795-10, T32 GM008336-16, T32 GM008336-18, GM 57795] Funding Source: Medline

向作者/读者索取更多资源

Jasmonate (JA) and its amino acid conjugate, jasmonoyl-isoleucine (JA-Ile), play important roles in regulating plant defense responses to insect herbivores. Recent studies indicate that JA-Ile promotes the degradation of JASMONATE ZIM-domain (JAZ) transcriptional repressors through the activity of the E-3 ubiquitin-ligase SCFCOI1. Here, we investigated the regulation and function of JAZ genes during the interaction of Arabidopsis (Arabidopsis thaliana) with the generalist herbivore Spodoptera exigua. Most members of the JAZ gene family were highly expressed in response to S. exigua feeding and mechanical wounding. JAZ transcript levels increased within 5 min of mechanical tissue damage, coincident with a large (approximately 25-fold) rise in JA and JA-Ile levels. Wound-induced expression of JAZ and other CORONATINE-INSENSITIVE1 (COI1)-dependent genes was not impaired in the jar1-1 mutant that is partially deficient in the conversion of JA to JA-Ile. Experiments performed with the protein synthesis inhibitor cycloheximide provided evidence that JAZs, MYC2, and genes encoding several JA biosynthetic enzymes are primary response genes whose expression is derepressed upon COI1-dependent turnover of a labile repressor protein(s). We also show that overexpression of a modified form of JAZ1 (JAZ1 Delta 3A) that is stable in the presence of JA compromises host resistance to feeding by S. exigua larvae. These findings establish a role for JAZ proteins in the regulation of plant anti-insect defense, and support the hypothesis that JA-Ile and perhaps other JA derivatives activate COI1-dependent wound responses in Arabidopsis. Our results also indicate that the timing of JA-induced transcription in response to wounding is more rapid than previously realized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据