4.8 Article

Global identification of DELLA target genes during Arabidopsis flower development

期刊

PLANT PHYSIOLOGY
卷 147, 期 3, 页码 1126-1142

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.108.121301

关键词

-

向作者/读者索取更多资源

Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S: RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据