4.7 Article

Deep RNA-Seq uncovers the peach transcriptome landscape

期刊

PLANT MOLECULAR BIOLOGY
卷 83, 期 4-5, 页码 365-377

出版社

SPRINGER
DOI: 10.1007/s11103-013-0093-5

关键词

Peach; Transcriptome; Alternative splicing; RNA-Seq; Non-coding RNA

资金

  1. National 863 program of China [2011AA100206]
  2. National 948 Project from the Ministry of Agriculture of China
  3. National Natural Science Foundation of China [31201604, 31000139]

向作者/读者索取更多资源

Peach (Prunus persica) is one of the most important of deciduous fruit trees worldwide. To facilitate isolation of genes controlling important horticultural traits of peach, transcriptome sequencing was conducted in this study. A total of 133 million pair-end RNA-Seq reads were generated from leaf, flower, and fruit, and 90 % of reads were mapped to the peach draft genome. Sequence assembly revealed 1,162 transcription factors and 2,140 novel transcribed regions (NTRs). Of these 2,140 NTRs, 723 contain an open reading frame, while the rest 1,417 are non-coding RNAs. A total of 9,587 SNPs were identified across six peach genotypes, with an average density of one SNP per similar to 5.7 kb. The top of chromosome 2 has higher density of expressed SNPs than the rest of the peach genome. The average density of SSR is 312.5/Mb, with tri-nucleotide repeats being the most abundant. Most of the detected SSRs are AT-rich repeats and the most common di-nucleotide repeat is CT/TC. The predominant type of alternative splicing (AS) events in peach is exon-skipping isoforms, which account for 43 % of all the observed AS events. In addition, the most active transcribed regions in peach genome were also analyzed. Our study reveals for the first time the complexity of the peach transcriptome, and our results will be helpful for functional genomics research in peach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据