4.7 Article

The transcription factor SlSHINE3 modulates defense responses in tomato plants

期刊

PLANT MOLECULAR BIOLOGY
卷 84, 期 1-2, 页码 37-47

出版社

SPRINGER
DOI: 10.1007/s11103-013-0117-1

关键词

Cuticle; Cutin monomer; Permeability; Programmed cell death; Solanum lycopersicum; Plant defense

资金

  1. BARD
  2. Israel Science Foundation (ISF)
  3. European Research Council (ERC)
  4. ISF

向作者/读者索取更多资源

The cuticle plays an important role in plant interactions with pathogens and with their surroundings. The cuticle acts as both a physical barrier against physical stresses and pathogens and a chemical deterrent and activator of the plant defense response. Cuticle production in tomato plants is regulated by several transcription factors, including SlSHINE3, an ortholog of the Arabidopsis WIN/SHN3. Here we used a SlSHINE3-overexpressing (SlSHN3-OE) and silenced (Slshn3-RNAi) lines and a mutant in SlCYP86A69 (Slcyp86A69)-a direct target of SlSHN3-to analyze the roles of the leaf cuticle and cutin content and composition in the tomato plant's defense response to the necrotrophic foliar pathogen Botrytis cinerea and the biotrophic bacterial pathogen Xanthomonas campestris pv. vesicatoria. We showed that SlSHN3, which is predominantly expressed in tomato fruit epidermis, also affects tomato leaf cuticle, as morphological alterations in the SlSHN3-OE leaf tissue resulted in shiny, stunted and permeable leaves. SlSHN3-OE leaves accumulated 38 % more cutin monomers than wild-type leaves, while Slshn3-RNAi and Slcyp86A69 plants showed a 40 and 70 % decrease in leaf cutin monomers, respectively. Overexpression of SlSHN3 resulted in resistance to B. cinerea infection and to X. campestris pv. vesicatoria, correlated with cuticle permeability and elevated expression of pathogenesis-related genes PR1a and AOS. Further analysis revealed that B. cinerea-infected Slshn3-RNAi plants are more sensitive to B. cinerea and produce more hydrogen peroxide than wild-type plants. Cutin monomer content and composition differed between SlSHN3-OE, Slcyp86A69, Slshn3-RNAi and wild-type plants, and cutin monomer extracted from SlSHN3-OE plants altered the expression of pathogenesis-related genes in wild-type plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据