4.7 Article

Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1

期刊

PLANT MOLECULAR BIOLOGY
卷 83, 期 3, 页码 219-233

出版社

SPRINGER
DOI: 10.1007/s11103-013-0084-6

关键词

Rose flower; Petal expansion; Ethylene; Plasma membrane intrinsic proteins; Protein interaction

资金

  1. National Nature Science Foundation of China [30871731]

向作者/读者索取更多资源

Aquaporins (AQPs) are multifunctional membrane channels and facilitate the transport of water across plant cell membranes. Among the plant AQPs, plasma membrane intrinsic proteins (PIPs), which cluster in two phylogenetic groups (PIP1 and PIP2), play a key role in plant growth. Our previous work has indicated that RhPIP2;1, a member of PIP2, is involved in ethylene-regulated cell expansion of rose petals. However, whether PIP1s also play a role in petal expansion is still unclear. Here, we identified RhPIP1;1, a PIP1 subfamily member, from 18 PIPs assemble transcripts in rose microarray database responsive to ethylene. RhPIP1;1 was rapidly and significantly down-regulated by ethylene treatment. RhETRs-silencing also clearly decreased the expression of RhPIP1;1 in rose petals. The activity of the RhPIP1;1 promoter was repressed by ethylene in rosettes and roots of Arabidopsis. RhPIP1;1 is mainly localized on endoplasmic reticulum and plasma membrane. We demonstrated that RhPIP1;1-silencing significantly inhibited the expansion of petals with decreased petal size and cell area, as well as reduced fresh weight when compared to controls. Expression of RhPIP1;1 in Xenopus oocytes indicated that RhPIP1;1 was inactive in terms of water transport, while coexpression of RhPIP1;1 with the functional RhPIP2;1 led to a significant increase in plasma membrane permeability. Yeast growth, beta-Galactosidase activity, bimolecular fluorescence complementation, and colocalization assay proved existence of the interaction between RhPIP1;1 and RhPIP2;1. We argue that RhPIP1;1 plays an important role in ethylene-regulated petal cell expansion, at least partially through the interaction with RhPIP2;1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据