4.7 Article

Phenotypic and gene expression analyses of a ploidy series of maize inbred Oh43

期刊

PLANT MOLECULAR BIOLOGY
卷 75, 期 3, 页码 237-251

出版社

SPRINGER
DOI: 10.1007/s11103-010-9722-4

关键词

Polyploidy; Autopolyploidy; Tetraploid; Hexaploid; Aneuploidy; Maize; Leaf proteome; 2D DIGE; GeLC-MS; Ploidy-regulated gene expression

资金

  1. NSF [DBI0733857]

向作者/读者索取更多资源

Polyploidization has repeatedly occurred during plant evolution. Although autopolyploidy is the best model to characterize the polyploidization effects in a highly controlled manner, there are limited studies on autopolyploids compared to allopolyploids. To improve our understanding of autopolyploidy effects in maize, we developed an inbred Oh43 ploidy series consisting of the diploid (2X), tetraploid (4X) and hexaploid (6X) lines and compared their phenotypes and gene expression in the mature adult leaf tissue. Our phenotypic study showed that plants of higher ploidy exhibit increased cell size but slower growth rate, later flowering, fewer tassel branches, reduced stature and fertility. Two-dimensional difference gel electrophoresis (2D DIGE) and gel electrophoresis followed by liquid chromatography and mass spectrometry (GeLC-MS) assays of the leaf proteomes revealed similar to 40 and 26% quantitative differentially expressed (DE) proteins, respectively, at the per genome level. A small number of qualitative DE proteins were also identified in the GeLC-MS assay. The majority of the quantitative DE proteins found in the 2D DIGE assay were present in either the 4X versus 6X or the 2X versus 6X comparison but not the 2X versus 4X comparison. Aneuploidy in some 6X plants might contribute to the more extensive changes of gene expression per genome in the 6X. Most changes of the protein expression per genome are less than twofold. Less than 5% of the DE genes exhibit a positive or negative continuous correlation through the ploidy series between their protein expression per genome, and the genome copy number. Hence, in the Oh43 ploidy series, expression for most proteins in a cell increases linearly with ploidy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据