4.8 Article

Insertion of a transposon-like sequence in the 5 '-flanking region of the YUCCA gene causes the stony hard phenotype

期刊

PLANT JOURNAL
卷 96, 期 4, 页码 815-827

出版社

WILEY
DOI: 10.1111/tpj.14070

关键词

stony hard peach; auxin; YUCCA; IPyA pathway (YUCCA pathway); Prunus persica (L). Batsch; transposon

资金

  1. Project of the Bio-oriented Technology Research Advancement Institution, NARO (the special scheme project on advanced research and development for next-generation technology)

向作者/读者索取更多资源

Melting-flesh peaches produce large amounts of ethylene, resulting in rapid fruit softening at the late-ripening stage. In contrast, stony hard peaches do not soften and produce little ethylene. The indole-3-acetic acid (IAA) level in stony hard peaches is low at the late-ripening stage, resulting in low ethylene production and inhibition of fruit softening. To elucidate the mechanism of low IAA concentration in stony hard peaches, endogenous levels of IAA and IAA intermediates or metabolites were analysed by ultra-performance liquid chromatography-tandem mass spectrometry. Although the IAA level was low, the indole-3-pyruvic acid (IPyA) level was high in stony hard peaches at the ripening stage. These results indicate that YUCCA activity is reduced in ripening stony hard peaches. The expression of one of the YUCCA isogenes in peach, PpYUC11, was suppressed in ripening stony hard peaches. Furthermore, an insertion of a transposon-like sequence was found upstream of the PpYUC11 gene in the 5 '-flanking region. Analyses of the segregation ratio of the stony hard phenotype and genotype in F1 progenies indicated that the transposon-inserted allele of PpYUC11, hd-t, correlated with the stony hard phenotype. On the basis of the above findings, we propose that the IPyA pathway (YUCCA pathway) is the main auxin biosynthetic pathway in ripening peaches of 'Akatsuki' and 'Manami' cultivars. Because IAA is not supplied from storage forms, IAAde novo synthesis via the IPyA pathway (YUCCA pathway) in mesocarp tissues is responsible for auxin generation to support fruit softening, and its disruption can lead to the stony hard phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据