4.8 Article

Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus

期刊

PLANT JOURNAL
卷 79, 期 3, 页码 398-412

出版社

WILEY-BLACKWELL
DOI: 10.1111/tpj.12566

关键词

Lotus japonicus; Rhizophagus irregularis; Glomus intraradices; mass spectrometry; galactolipid; phospholipid; fatty acid de novo synthesis

资金

  1. Deutsche Forschungsgemeinschaft [Schwerpunktprogramm 1212, Do520/9]

向作者/读者索取更多资源

Arbuscular mycorrhiza formation with fungi of the Glomeromycota represents a widespread symbiotic interaction of vascular plants. Different signaling events and metabolic adaptations are required for the close interaction between the two partners. Membrane lipid synthesis is a prerequisite for symbiosis, and membrane properties depend on lipid composition. Lipid profiling was performed by liquid chromatography mass spectrometry to study the role of triacylglycerol, diacylglycerol, phospholipids, galactolipids, sterols and sphingolipids during the colonization of Lotus japonicus roots with Rhizophagus irregularis (syn. Glomus intraradices). Mycorrhization leads to an increased phosphate supply and suppresses the increase in galactolipids commonly observed in phosphate-deprived plants. In addition to free sterols and sterol esters, R. irregularis contains sterol glucosides and acylated sterol glucosides. Glycosylated sphingolipids (glucosylceramide, dihexosylceramide) and inositolphosphorylceramide were detected in the fungus. Lysophosphatidylcholine, a lipid previously implicated in mycorrhiza signaling, is present in low amounts in mock-infected and mycorrhized roots. The composition of fungal phospholipids changes after mycorrhization because molecular species with palmitvaccenic (di-16:1) or tetracosenoic (24: 1) acyl groups decrease in intraradical mycelium. This adaptation of lipid metabolism during intraradical growth is likely a prerequisite for symbiosis, achieving functional compatibility between the fungal and the periarbuscular membrane. Data mining in genomic and transcript databases revealed the presence of genes encoding enzymes of lipid biosynthesis in R. irregularis. However, no gene encoding multidomain fatty acid de novo synthase was detected in the genome sequence of this obligate biotrophic fungus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据