4.8 Article

A facile means for the identification of indolic compounds from plant tissues

期刊

PLANT JOURNAL
卷 79, 期 6, 页码 1065-1075

出版社

WILEY
DOI: 10.1111/tpj.12607

关键词

Glycine max; Solanum lycopersicum; Cocos nucifera; Ginkgo biloba; IAA conjugates; indole-3-acetyl-trytophan; auxin; LC-MS; Orbitrap; technical advance

资金

  1. University of Minnesota
  2. University of Minnesota Department of Horticultural Science Plant Development Scholarship
  3. National Science Foundation [IOS-1238812]
  4. Plant Genome Research Program
  5. Minnesota Agricultural Experiment Station
  6. Gordon and Margaret Bailey Endowment for Environmental Horticulture
  7. Direct For Biological Sciences
  8. Division Of Integrative Organismal Systems [1238812] Funding Source: National Science Foundation

向作者/读者索取更多资源

The bulk of indole-3-acetic acid (IAA) in plants is found in the form of conjugated molecules, yet past research on identifying these compounds has largely relied on methods that were both laborious and inefficient. Using recent advances in analytical instrumentation, we have developed a simple yet powerful liquid chromatography-mass spectrometry (LC-MS)-based method for the facile characterization of the small IAA conjugate profile of plants. The method uses the well-known quinolinium ion (m/z130.0651) generated in MS processes as a signature with high mass accuracy that can be used to screen plant extracts for indolic compounds, including IAA conjugates. We reinvestigated Glycine max (soybean) for its indoles and found indole-3-acetyl-trytophan (IA-Trp) in addition to the already known indole-3-acetyl-aspartic acid (IA-Asp) and indole-3-acetyl-glutamic acid (IA-Glu) conjugates. Surprisingly, several organic acid conjugates of tryptophan were also discovered, many of which have not been reported in planta before. These compounds may have important physiological roles in tryptophan metabolism, which in turn can affect human nutrition. We also demonstrated the general applicability of this method by identifying indolic compounds in different plant tissues of diverse phylogenetic origins. It involves minimal sample preparation but can work in conjunction with sample enrichment techniques. This method enables quick screening of IAA conjugates in both previously characterized as well as uncharacterized species, and facilitates the identification of indolic compounds in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据