4.8 Article

Microtubules, signalling and abiotic stress

期刊

PLANT JOURNAL
卷 75, 期 2, 页码 309-323

出版社

WILEY
DOI: 10.1111/tpj.12102

关键词

cold sensing; gravisensing; mechanosensing; osmosensing; phospholipaseD; plant microtubules

向作者/读者索取更多资源

Plant microtubules, in addition to their role in cell division and axial cell expansion, convey a sensory function that is relevant for the perception of mechanical membrane stress and its derivatives, such as osmotic or cold stress. During development, sensory microtubules participate in the mechanical integration of plant architecture, including the patterning of incipient organogenesis and the alignment with gravity-dependent load. The sensory function of microtubules depends on dynamic instability, and often involves a transient elimination of cortical microtubules followed by adaptive events accompanied by subsequent formation of stable microtubule bundles. It is proposed that microtubules, because of their relative rigidity in combination with their innate nonlinear dynamics, are pre-adapted for a function as mechanosensors and, in concert with the flexible actin filaments and the anisotropic cell wall, comprise a tensegral system that allows plant cells to sense geometry and to respond to fields of mechanical strains such that the load is minimized. Microtubules are proposed as elements of a sensory hub that decodes stress-related signal signatures, with phospholipase D as an important player.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据