4.8 Article

Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy

期刊

PLANT JOURNAL
卷 77, 期 2, 页码 173-184

出版社

WILEY
DOI: 10.1111/tpj.12379

关键词

Papaver somniferum; secondary metabolism; short-chain dehydrogenase; reductase; tissue-specific localization; virus-induced gene silencing

资金

  1. Genome Canada
  2. Genome Alberta
  3. Government of Alberta
  4. Natural Sciences and Engineering Research Council of Canada
  5. Canada Foundation for Innovation - Leaders Opportunity Fund

向作者/读者索取更多资源

The final step in the biosynthesis of the phthalideisoquinoline alkaloid noscapine involves a purported dehydrogenation of the narcotinehemiacetal keto moiety. A short-chain dehydrogenase/reductase (SDR), designated noscapine synthase (NOS), that catalyzes dehydrogenation of narcotinehemiacetal to noscapine was identified in opium poppy and functionally characterized. The NOS gene was isolated using an integrated transcript and metabolite profiling strategy and subsequently expressed in Escherichia coli. Noscapine synthase is highly divergent from other characterized members of the NADPH-dependent SDR superfamily involved in benzylisoquinoline alkaloid metabolism, and it exhibits exclusive substrate specificity for narcotinehemiacetal. Kinetic analyses showed that NOS exhibits higher catalytic efficiency with NAD+ as the cofactor compared with NADP+. Suppression of NOS transcript levels in opium poppy plants subjected to virus-induced gene silencing resulted in a corresponding reduction in the accumulation of noscapine and an increase in narcotinehemiacetal levels in the latex. Noscapine and NOS transcripts were detected in all opium poppy organs, but both were most abundant in stems. Unlike other putative biosynthetic genes clustered in the opium poppy genome, and their corresponding proteins, NOS transcripts and the cognate enzyme were abundant in latex, indicating that noscapine metabolism is completed in a distinct cell type compared with the rest of the pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据