4.8 Article

Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation

期刊

PLANT JOURNAL
卷 66, 期 2, 页码 231-240

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-313X.2011.04483.x

关键词

bloom; cucumber; pumpkin; root stock; silicon; transporter

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [22119002]
  2. Ministry of Agriculture, Forestry and Fisheries of Japan
  3. Genomics for Agricultural Innovation [IPG-0006]
  4. Ohara Foundation for Agricultural Research

向作者/读者索取更多资源

P>A high accumulation of silicon (Si) is required for overcoming abiotic and biotic stresses, but the molecular mechanisms of Si uptake, especially in dicotyledonous species, is poorly understood. Herein, we report the identification of an influx transporter of Si in two Cucurbita moschata (pumpkin) cultivars greatly differing in Si accumulation, which are used for the rootstocks of bloom and bloomless Cucumis sativus (cucumber), respectively. Heterogeneous expression in both Xenopus oocytes and rice mutant defective in Si uptake showed that the influx transporter from the bloom pumpkin rootstock can transport Si, whereas that from the bloomless rootstock cannot. Analysis with site-directed mutagenesis showed that, among the two amino acid residues differing between the two types of rootstocks, only changing a proline to a leucine at position 242 results in the loss of Si transport activity. Furthermore, all pumpkin cultivars for bloomless rootstocks tested have this mutation. The transporter is localized in all cells of the roots, and investigation of the subcellular localization with different approaches consistently showed that the influx Si transporter from the bloom pumpkin rootstock was localized at the plasma membrane, whereas the one from the bloomless rootstock was localized at the endoplasmic reticulum. Taken together, our results indicate that the difference in Si uptake between two pumpkin cultivars is probably the result of allelic variation in one amino acid residue of the Si influx transporter, which affects the subcellular localization and subsequent transport of Si from the external solution to the root cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据