4.8 Article

TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis

期刊

PLANT JOURNAL
卷 68, 期 1, 页码 147-158

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-313X.2011.04674.x

关键词

TCP; transcription factor; development; morphometric analysis; Arabidopsis thaliana

资金

  1. Biotechnology and Biological Sciences Research Council [24/G19465]
  2. White Rose PhD studentship
  3. Biotechnology and Biological Sciences Research Council [G19465] Funding Source: researchfish

向作者/读者索取更多资源

TCP transcription factors constitute a small family of plant-specific bHLH-containing, DNA-binding proteins that have been implicated in the control of cell proliferation in plants. Despite the significant role that is likely to be played by genes that control cell division in the elaboration of plant architecture, functional analysis of this family by forward and reverse genetics has been hampered by genetic redundancy. Here we show that mutants in two related class I TCP genes display a range of growth-related phenotypes, consistent with their dynamic expression patterns; these phenotypes are enhanced in the double mutant. Together, the two genes influence plant stature by promoting cell division in young internodes. Reporter gene analysis and use of SRDX fusions suggested that TCP14 and TCP15 modulate cell proliferation in the developing leaf blade and specific floral tissues; a role that was not apparent in our phenotypic analysis of single or double mutants. However, when the relevant mutants were subjected to computer-aided morphological analysis of the leaves, the consequences of loss of either or both genes became obvious. The effects on cell proliferation of perturbing the function of TCP14 and TCP15 vary with tissue, as has been suggested for other TCP factors. These findings indicate that the precise elaboration of plant form is dependent on the cumulative influence of many TCP factors acting in a context-dependent fashion. The study highlights the need for advanced methods of phenotypic analysis in order to characterize phenotypes and to construct a dynamic model for TCP gene function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据