4.8 Article

CCoAOMT suppression modifies lignin composition in Pinus radiata

期刊

PLANT JOURNAL
卷 67, 期 1, 页码 119-129

出版社

WILEY
DOI: 10.1111/j.1365-313X.2011.04580.x

关键词

Pinus radiata; caffeoyl-CoA 3-O-methyltransferase; tracheary elements; lignin; caffeyl alcohol; benzodioxane

资金

  1. New Zealand Foundation for Research, Science and Technology [C04X0207, C04X0703]
  2. US Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science) [BER DE-FC02-07ER64494]

向作者/读者索取更多资源

A cDNA clone encoding the lignin-related enzyme caffeoyl CoA 3-O-methyltransferase (CCoAOMT) was isolated from a Pinus radiata cDNA library derived from differentiating xylem. Suppression of PrCCoAOMT expression in P. radiata tracheary element cultures affected lignin content and composition, resulting in a lignin polymer containing p-hydroxyphenyl (H), catechyl (C) and guaiacyl (G) units. Acetyl bromide-soluble lignin assays revealed reductions in lignin content of up to 20% in PrCCoAOMT-deficient transgenic lines. Pyrolysis-GC/MS and 2D-NMR studies demonstrated that these reductions were due to depletion of G-type lignin. Correspondingly, the proportion of H-type lignin in PrCCoAOMT-deficient transgenic lines increased, resulting in up to a 10-fold increase in the H/G ratio relative to untransformed controls. 2D-NMR spectra revealed that PrCCoAOMT suppression resulted in formation of benzodioxanes in the lignin polymer. This suggested that phenylpropanoids with an ortho-diphenyl structure such as caffeyl alcohol are involved in lignin polymerization. To test this hypothesis, synthetic lignins containing methyl caffeate or caffeyl alcohol were generated and analyzed by 2D-NMR. Comparison of the 2D-NMR spectra from PrCCoAOMT-RNAi lines and synthetic lignins identified caffeyl alcohol as the new lignin constituent in PrCCoAOMT-deficient lines. The incorporation of caffeyl alcohol into lignin created a polymer containing catechyl units, a lignin type that has not been previously identified in recombinant lignin studies. This finding is consistent with the theory that lignin polymerization is based on a radical coupling process that is determined solely by chemical processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据