4.8 Article

Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice

期刊

PLANT JOURNAL
卷 65, 期 5, 页码 820-828

出版社

WILEY
DOI: 10.1111/j.1365-313X.2010.04467.x

关键词

small RNA; miniature inverted-repeat transposable element; stem-loop precursor; abscisic acid and abiotic stresses; rice

资金

  1. Chinese Academy of Sciences [KSCX2-YW-N-025]

向作者/读者索取更多资源

P>Small silencing RNAs (sRNAs) are non-coding RNA regulators that negatively regulate gene expression by guiding mRNA degradation, translation repression or chromatin modification. Plant sRNAs play crucial roles in various developmental processes, hormone signaling, immune responses and adaptation to a variety of abiotic stresses. miR441 and miR446 were previously annotated as microRNAs (miRNAs) because their precursors can form typical stem-loop structures, but are not considered as real miRNAs because of inconsistency with some ancillary criteria of the recent guidelines for annotation of plant miRNAs. We tentatively rename them small interfering (si)R441 and siR446, respectively, in this study. It has recently been shown that the precursors of siR441 and siR446 might originate from the miniature inverted-repeat transposable element (MITE) Stowaway1. In this report, we show that, in contrast with Dicer-like (DCL)3- and RNA-dependent RNA polymerase (RDR)2-dependent MITE-derived ra-siRNAs, siR441 and siR446 are processed by OsDCL3a but independent of OsRDR2, indicating that siR441 and siR446 are generated from single-stranded stem-loop precursors. We also show that abscisic acid (ABA) and abiotic stresses downregulate the expression of siR441 and siR446 but, surprisingly, increase the accumulation of their precursors in rice plants, implying that processing of siRNA precursors is inhibited. We provide evidence to show that this defective processing is due to increased precursor accumulation per se, possibly by intermolecular self-pairing of the processing intermediate sequences, thus hindering their normal processing. Functional examinations indicate that siR441 and siR446 are positive regulators of rice ABA signaling and tolerance to abiotic stress, possibly by regulating MAIF1 expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据