4.8 Article

Combined MRI-PET dissects dynamic changes in plant structures and functions

期刊

PLANT JOURNAL
卷 59, 期 4, 页码 634-644

出版社

WILEY
DOI: 10.1111/j.1365-313X.2009.03888.x

关键词

carbon-11 (C-11); co-registration; functional imaging (3D); magnetic resonance imaging (MRI); non-invasive method; positron emission tomography (PET)

向作者/读者索取更多资源

Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires noninvasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope C-11. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据